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PEAKS FROM RANDOM DATA

Sheldon M. Ross+

Department of Industrial Engineering and Operations Research

University of California. Berkeley

n aniluentl Iand controversial paper. Raup and Sepkoski L2f defined an

event of mass extinction to have occurred in any time period (of roughly 6.4

million years) for which the data value for that time period (equal to the

proportion of the families existing at the beginning of that period that went

extinct during the period) exceeded that of its immediate neighbors. Ifi- this

note w analyzes the occurrence of such events when the data are randomly

generated from a continuous distribution.

+This research was supported by the Air Force Office of Scientific Research

(AFOSR) USAF. under grant AFOSR-86-0153 with the University of California.
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2. THE PROCESS OF EVENTS UNDER RANDOM DATA

Let X .X2 .... be a -equence of independent and Identically distributed

continuous random variables, and define an event to occur at time period j If

Xi- < X >Xj .j 2. Let

I if an event occurs at time j
j 0 otherwise

and set

n
N(n) I I

In words, N(n) Is the number of events by time n.

Proposition 1: With probability 1,

i. N(n)/n = 1/3

n

Proof: This follows from the ergodic theorem since (I J, j 2) is a

stationary ergodic sequence and E[I iJ = 1/3. A simpler proof Is obtained by

noting that (1 2#1 5' 1I8...)' {I30I69I9.... ). and 1I4','1.. I Ir ac i

sequences whose average value converges, by the strong law of large numbers.

to 1/3. QED

The mean and variance of N(n) are easily obtained. ~ Accesion For
4 n

E[N(n)J I E[IJ= (n-l)/3 NTIS CRA I
J=2 OTIC TAB0

Unairotfcd 0
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n
Var[N(n)J j 1 Var(I) + 2 1 1 Cov(I1.I)

--2 iqj

As

Var(I)= 2/9

Cov(Ii.I1 +1 ) = - E[I1J E[I1 +,]J -1/9

Cov(I1,I 1 +2) = P{X 1  < X 1 > (il X1+2 > X+)- 1/9

I I I I dxldx2 dx. dx 4 dx 1/9 =1/45
,xl< 2 >x 3 <x 4 >X.

O<x ( 1

Cov(Ii*I1i~) 0. j 3

we see from the above that, for n 3.

Var[N(n)J = 2(n-1)/9 -2(n-2)/9 +2(n-3)/45

= (2n + 4)/45

It follows from the above and the central limit theorem for stationary ergodic

processes that

N4(n) - (n-l)/3
_________ _ -------. 11(0.1)

-(2 4/4 9
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Terminolov If XJ_ 1 ( X > XJ+ 1 call XJ+ the end-of-peak value.

3. INTEREVENT TIMES

Let TiV il. denote the time between the Ith and (i+l) s t event - for

instance, if 12=I4=1 then Tff2. Even though the TI are neither independent nor

identically distributed we will show that the proportion of them that equal j

will, with probability 1. converge to a constant value which we shall call p.

To determine the values pj, call an event a J-event if the event preceding it

occurred exactly J time periods earlier, and note that by the same argument as

used in Proposition 1, the rate at which J-events occur, call it r(j), will

equal the limiting probability of a J-event at time period n. Let

R(k) = I r(j)
J3k

That is. R(k) denotes the rate at which interevent times of length greater

than k occur. Now, an interevent time will exceed k if, for some rffO.1....k

the next r values after an end of peak are each less. and the next k-r values

are each greater, than their preceding values. Therefore, for k 2,

1(k) P{X_ 2 <X_ 1 >Xo<X1 <... <xk + P{X_2<X_>Xo>X 1 >... >Xk}

k-1
+ + 7 P{X_2 (XI>X>oX 1>..>Xr(Xr+l<... Xk )

r=1

I (l-x)k (lx 2 ) 1 k+2 k-lx r k-r

ff i- f x dx + I 1 f (x-y) x (1-y)kdy dx
0 k! 2 0 (k+l)! r=l 0 0 r! (k-r)!
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where the last equality obtains from conditioning the first probability on the

value of X0 , the second on XI and the remaining on both X 1I and Xr

As the rate at which events occur is 1/3 it follows that the proportion

of events that are i-events is 3r(j). That is,

pj = 3 r(J).

A direct integration of the above yields, upon using the identity

k
I r(J) = I - R(k)
J--2

that

p2 = 2/5

P3 = 1/3

p4 = 6/35

P5 = 1/15

= .02116401

and so on. The quantities p1 also represent the limiting distribution of the

T V A simple, though tedious, mumming of the values R(k) yields the (already

known) result that the mean of this limiting distribution is 3.

Remark: The above could also have been obtained by consideration of the Markov

(hain of successive end-of-peak values. The limiting value of TI could then be

computed by conditioning on X. the limiting end-of-peak value (whose density

is given by f(x)=3(l-x2 )/2, O(x(l). and then computing the probability

density of the time between peaks when the initial one has an end-of-peak

value X.
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